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Abstract— Genetic Artificial Life Environment (GALE)
is a classification-oriented model based on coopera-
tive agent aggregates spread over a two dimensional
board. The model, combining Genetic Algorithms and
Artificial Life ideas, solves classification problems de-
scrived by continuous-valued inputs. This paper de-
scribes GALE focusing on a key point, resources alloca-
tion over the 2D world. The main apportation is that
using an accurate resources allocation we can clearly
improve convergence speed at the same time that the
complexity of the solution is reduced.
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Aggregates, Artificial Life, Genetic Algorithms and Ge-
netic Programming.

I. INTRODUCTION

ENETIC Algorithms [1], [2] and Genetic Pro-

gramming [3], [4], [5] are computation models
that play a central role in many Artificial Life models
[6]. This paper presents one of them, the Genetic Arti-
ficial Life Environment (GALE) [7], [8]. GALE defines
a 2D world where agents cooperate and compete each
other looking for survival through adaptation in a cer-
tain environment. The main contribution of GALE
is that the whole model is oriented to solve machine
learning problems -automatic classification problems
described by continuous-valued inputs-.

Genetic Algorithms have proved to be a very useful
technique in solving automatic classification problems
(1], [9], [10]. Likewise, Artificial Life models are able
to describe agents’ interactions and evolution [1], [11],
[12]. GALE mixes up both approaches. This mixture
lets us: (1) study the agents’ behavior along their evo-
lution, and (2) solve real-world classification problems.

GALE solves classification problems through the
emergence of the solution from agents’ interactions.
These interactions are defined in terms of cooperation
and competition. Spontaneous hierarchical adhesion
[11] among agents models the cooperation. This ad-
hesion -defined as the aggregation of agents- provides
an emergent way of solving the classification problem.
Competition is modeled as an arms race for limited
space and resources. Cooperation and competition are
also the basis for the adaptation of agents to the en-
vironment. Agents’ adaptation -learning- depends on
the evolutionary rules defined in genetic terms, which
are based on neighborhood spatial relations.
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A set of classification examples is the input used in
GALE for performing supervised learning. The map-
ping of the input examples over the 2D world of GALE
defines resources allocation. This mapping is a key
point for the model. We present different criteria for
spreading the examples, showing that they can im-
prove the convergence speed of the algorithm at the
same time that they reduce the complexity of the solu-
tion obtained. In other words, resources allocation can
keep agents’ interations in a simple fashion, exploiting
building blocks [1] formation.

In order to complement the description of GALE, we
present some results obtained using this model solv-
ing a real-world classification problem: the diagnosis
of breast cancer. The results are briefly compared to
the ones obtained using well-known classification tech-
niques (i.e Neural Networks and Case-Based Reason-
ing). We also present the behavior of the interactions
among agents observed along the GALE runs. Finally
we discuss some conclusions and futher work.

II. GENETIC ARTIFICIAL LIFE ENVIROMENT

As early mentioned, GALE is a classification-
oriented world. Therefore, the agents spread over the
world are to solve a given classification problem. The
meaning of classification in this work is not the process
of generating classes or data clusters. This work fo-
cuses on supervised learning. The classification prob-
lems need to find a way to link an example with its
associated class. This means that the set of possible
classes is well known for a given problem.

This kind of classification problems can be seen as
class prediction. Thus, finding a path between an ex-
ample and its belonging class is the goal of the evolved
agents. In order to reach this goal, the problem pro-
vides a set of training examples, each one having its
belonging class. Each example feature is continuous-
valued.

Definition of GALE holds on four different parts:
(1) board topology, (2) agents interactions, (3) world
mechanisms and (4) resources allocation. The board
topology defines the world appearence and neighbor-
hood relations. Agents and their interations are in
charge of solving the classification problem. In other
words, the accuracy of GALE depends on their defini-
tion. GALE agents evolve following the genetic rules
defined by the world mechanisms. Finally, resource
allocation is the key for obtaining a good performance
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Fig. 1. Board topology. Each cell can be either empty or
occupied (painted as a dot)

from the model. It defines how to map the training
examples over the world topology.

The board topology is based on a 2D grid. Cellu-
lar automata [13] and traditional Artificial Life mod-
els [12], [14], [15] inspire this board distribution. The
board used is a 2D toroidal mesh. Each cell in the
board is connected to its eight surrounding neigh-
bors. This spatial structure constrains the interac-
tion among agents in spacially defined subpopulations.
Each cell in the board can be either empty or occupied
by an aggregate of agents, shown in figure 1.

III. AGENTS

Agents are the building blocks of the solution to the
classification problem. Each agent represents a sig-
nificant point [16], [17], [18]. This point belongs to
the n-dimensional continuous-valued space defined by
the features of the classification problem!. Each agent
is also linked to a class of the classification problem.
This class qualifies the classification region defined by
the significant point. In other words, all the region
share the same classification class.
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Fig. 2. 2D significant points

Figure 2.a shows these ideas for a classification prob-
lem defined by two continuous-valued features. In this
example, the agent represents a point (z,y) in a 2D
space defined by the features F1 and F2. The agent
also has a limited sight range r that defines its region
of influence. All the points in this region share the
same class pointed out by the agent. Another char-
acteristic of the agents is that they do not need to
fully define significant points. Instead, agents allow

1n is the number of features of the problem.

representations of partially defined significant points.
Figure 2.b presents an example.

An agent codifies the information of its significant
point in its genotype. The genotype contains the fol-
lowing information: (1) Significant Point Feature List
(SPFL), (2) Threshold r and Class c.

The SPFL contains the value of the features of the
significant point described by the agent. The num-
ber of features contained in the SPFL is not fixed, so
not all the features has to be present at the significant
point definition. Threshold r defines the sight range
of the agent. Class ¢ represents the linked class asso-
ciated to the classification region represented by the
agent. Figure 3 presents an example of the genotype
of an agent.

SPFL : ((F1, x) (F2,y))
r:0.6 c:C3

Fig. 3. Genotype of an agent

It is important to keep in mind that the main goal
of this work wants to solve classification problems de-
scribed by examples with continous-valued features.
An agent can either classify or not an exemple. An
agent does not classify an example if it is outside the
region defined by the significant point codified in its
genotype. Otherwise, the agent classifies the example
using the class coded in its genotype.
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Fig. 4. Example of classification process used by Agents

Figure 4 shows an example of this classification pro-
cedure. The example e2lays outside the region defined
by the agent, therefore e2 is not classified. Instead, el
belongs to the classification region. Thus, the agent
classifies el using the class coded in its genotype (c).

The classification of examples uses the distance be-
tween the example and the significant point of the
agent. An agent classifies an example z if:

> (SPFL;—z)*<r (1)

i€ESPFL

This procedure works correctly in fully defined
points -figure 2.a- or partially defined ones -figure 2.b-.

IV. AGENT HIERARCHICAL AGGREGATES

Agent definition has some serious drawbacks. They
arise from the limited information coded inside the
genotype of each agent. It follows from the agent
matching procedure that an agent all alone does not
solve classification problems with more than one class.



Definition also has a limited expressivity for defining
region boundaries. These limitations claim an exten-
sion of agent capabilities as classifiers. Cooperation
and competition among agents show a way for solving
these limitations. Evolution plays a main role in the
definition of these relations among agents.

Cooperation extends the classification capabilities
of agents. Therefore the classification procedure is no
longer depending on just one agent. It is the result
of the interaction among several agents working to-
gether. This means a redefinition of classification re-
gions based on significant points. This redefinition
summarizes saying that the classification region of an
agent ends where the region of another agent starts.
Figure 5 shows the cooperations between three differ-
ent agents al, a2 and a8. This approach introduces
a more expressive way to break the space of features.
Choosing the right significant points helps us to solve
complex classification problems.

F2

F1

Fig. 5. Three cooperative agents

Multiagent structures collect cooperative behavior
of agents. These structures stick together useful ag-
gregations obtained through evolution. The structure
proposed is a hierarchical aggregation of agents - Agent
Hierarchical Aggregates (AHA )-. The usage of multia-
gent structures also needs a hierarchical classification
procedure, in order to exploid the cooperative behav-
ior of the structure.

AHASs provide an extended classification procedure.
It uses the classification procedure of agents at the
same time that introduces nearest neighbor policies
for defining classification region boundaries. Figure 6
presents how AHAs work out in practice. This exam-
ple is going to be used for explaining the classification
procedure.

Six different agents {a1, az, as, a4, as, ag} consti-
tute the AHA presented in figure 6.a. Agent a; is the
entry point for classifying the new example z, and it
decides to classify the example because = satisfies, as
shown in figure 6.b, that:
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a1 knows that x belongs to its classification region
because af threshold is greater or equal to the distance
between z and the SPFL of a;. Once this check is
done, a; has to decide which is the class associated to
2. The resulting class arises from the matching pro-
cedure of {a2, a3, a4}, figure 6.c. Deciding at which
class x belongs is done by choosing the closest agent to
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Fig. 6. Agent hierarchical aggregation for clasification problem
solving

x. Nearest neighbor policies are the basis of the selec-
tion. The selected agent -as- is the one that satisfies:

2
. SPFL;
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ve(at, z) is the set of all agents (children agents of
a1) that has z in their sight range. In other words, it is
the set of all child agents that the distance between its
SPFL and z is less or equal than its threshold. If vc is
the empty set then x remains unclassified. Once ag is
chosen, the classification procedure reaches a5 and ag,
as figure 6.d shows. The results of this procedure is
ag -nearest agent- which is in charge of finally defining
the class to be linked to . This class is recovered from
ag genotype information.

This classification procedure appears as a coopera-
tive endeavour. Cooperation among agents is the ba-
sis for the survival of the aggregate since all agents are
stuck in a single structure. A detailed explanation of
this classification procedure can be found in [7].

V. GALE MECHANISMS

Agent hierarchical aggregates emerge as a result of
the evolution defined in the GALE model. GALE
topology is based on a 2D board -figure 1-. It allows to
use a fine-grain parallel evolution based on neighbor-
hood relations. Each cell in the board runs the same
algorithm which is in charge of improving the classifi-
cation accuracy of agent hierarchical aggregates.

Figure 7 presents the three main mechanisms of
GALE: (1) survival, (2) merge and (3) split. They mix



Initialize

Split Survival

Carns D—— e

Merge

Fig. 7. Cell Cycle

G

Fig. 8. Aggregates genetic information recombination

up recombination techniques of genetic algorithms, ge-
netic programming and local neighborhood restrictions
inspired by cellular automata. A detailed explanation
of these mechanisms can be found in [8].

A. Survival

The survival mechanisms implements the selective
pressure among cells in the locally defined neighbor-
hoods -figure 1-. The selective pressure for a given cell
is defined in terms of AHA fitness of the neighborhood
and the number of neighbors present. AHA fitness is
computed as:

fitness(AHA) = (%)2 (4)

cis the number of correct classified examples and ¢ is
the number of examples contained in the cell. For each
cell, the chances of death for the contained AHA varies
due to the number of neighbors. Three diferent situa-
tions are defined: (1) solitude -one or two neighbors-,
(2) steady -from three up to six neighbors- and (3)
crowd -more than six neighbors-. These three sce-
narios define their selective pressure in terms of death
probability -see [8]-.

B. Merge

The merge mechanism is in charge of the recombi-
nation of the genetic material of AHAs. It has two
sequential steps: (1) choose the merging neighbor,
and (2) recombine the aggregates information. The
merging neighbor is randomly selected from the set
of available aggregates of cell’s neighborhood. Once
the merging neighbor is chosen and moved to the cell,
AHA information is recombined in terms of genetic
operators.

The recombination operator is based on Genetic
Programming crossover [3], [4], [5]. Figure 8 shows
an example of this recombination process. Recombi-
nation produces just one AHA due to the limited room
of each cell.

C. Split

The splitting phase is in charge of aggregates au-
toreplication, introducing genetic diversity through
somatic mutation [19]. Once the splitted aggregate
is obtained, some cell has to contain it. Two rules
decide the destination cell of the splited aggregate.
These rules can be summarized as: (1) if there are
empty neighbor cells, then place the aggregate in the
empty cell with more neighbors, and (2) if there are no
empty neighbor cells, then replace the neighbor with
lowest fitness.

VI. RESOUCES ALLOCATION

GALE works as a supervised learning model. One
key point is how the training examples are going to be
spread over the board. In other words, each AHA is
evaluated using a set of examples assigned to the cell.
Choosing the examples to be placed in each cell is the
process we call resouces allocation.

Figure 9 shows two differents ways for resource allo-
cation. The easiest approach, figure 9.a, copies all the
training examples in each cell of the board. Doing this,
we obtain cells containing the same examples, there-
fore the same environmental conditions are obtained
in each cell.
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Fig. 9. Resource allocation of training examples

The second approach spreads the examples in a non-
uniform way. Figure 9.b presents this resources allo-
cation. The distribution spreads the examples using a
pyramid shape. Central cells contain all the available
examples. The rest contain just a part of the whole
set of examples.

The pyramid allocation does not have the same en-
vironmental conditions for each cell. Instead, it guar-
antees that just few changes are introduced in adjacent
cells. This means that few examples are removed when
moving towards the foot of the pyramid. All the cells
with equal number of examples contain the same ex-
amples. With this allocation, classification complexity
grows when moving throgh cells at the top of the pyra-
mid.

This growing classification complexity encorages
building blocks formation. Cells at the foot of the
mountain define simple environments easy to solve.
Due to the parallel definition of GALE board fast ex-
ploration of building blocks can be achieved. Once dis-
covered they can be exploited in more complex cells
through GALE recombination mechanisms. This al-
location enables partial solutions, obtained in cells at



the foot of the pyramid, reach the cells at the top of
the pyramid building a complete solution to the clas-
sification problem.

VII. IN PRACTICE

GALE testing is done through a real-world classifi-
cation problem, the breast cancer diagnosis. Using
a real-world problem let us test GALE in complex
problems. The classification problem deals with the
diagnosis of breast cancer in cancerous or not using
mamary biopsy images.

Data was provided by the Signal Theory Research
Group from our University. The problem can be re-
duced to the prediction, for each new example, in can-
cerous or non cancerous. The details of this problem
can be found in [16], [20], [21]. Mammary biopsy im-
ages are digitally processed and each biopsy image is
described by a vector of 24 continous-valued features.
Each feature belongs to a bounded continous-valued
range. For each processed image, its belonging class
-cancerous or non cancerous- is known, provided by
the human experts. This vectors are the input data
provided to GALE. The data set used contains 1028
continuous-valued vectors.

In order to preliminary test GALE performance, the
data set was splitted in two different sets, randomly
generated. The first set is the training set used as
GALE input. The second one is used in the test phase.
The preliminary results presented here uses a 10% of
the examples for training and the rest for testing the
results obtained from GALE. We also used 90% for
training and 10% for testing GALE. For each propor-
tion, several partition were made randomly. For each
training set several GALE runs were made.

The tests were designed to prove two hypothesis:
(1) GALE is an accurate classification model and (2)
resource allocation plays a very important role in spa-
tially defined board models.

TABLE I
CLASSIFICATION PERFORMANCE
| || Train | Test |
Backpropagation Networks - 82.01%
Case-Based Reasoning - 80.45%
GALE 99.29% | 81.24%

Table I presents the mean classification perfomance
of GALE compared to two well-known classification
techniques like Neural Networks [22] and Case-Based
Reasoning [23]. The results obtained show that GALE
outperforms Case-Based Reasoning. They also show
that GALE performance is very close to the results
obtained using Neural Networks.

Figures 10 and 11 prove the hipothesis done for re-
sources allocation. Pyramid shaped allocation has a
dual behavior. It clearly improves the convergence
speed of GALE, but it also reduce the complexity -
number of agents of an AHA- of the solutions evolved
by GALE. This results point that resource allocation
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Fig. 10. Comparision between resource allocation approaches

is actually a key point for the board-based evolution
of AHAs.
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Fig. 11. Number of agents in AHAs

GALE also presents another interesting emergent
behavior. Evolution, in the initial steps, presents an
island growing behavior. Some group of cells remain
together. The growing rate of these islands is propo-
tional to the classification accuracy of AHAs in cells.
This uncontroled growing leads to a steady state were
all cells contain an AHA. This could seem trivial, but
the important point is that the complexity -number
of agents- of an AHA depends on the resource allo-
cated in each cell. Figure 12 show these facts. Once
GALE finds a solution to the classification problem,
AHA’s complexity remains steady, proportional to the
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number of examples in its cell.

VIII. CoNCLUSIONS AND FUTHER WORK

GALE has presented an 2D world for evolving
classification-oriented agent aggregates. This model
is based on Genetic Algorithms, Genetic Programming
and Artificial Life ideas. Preliminary results point out
that it is an efficient model for solving classification
problems with continuous-valued inputs. But GALE
also shows that resouces allocation in 2D boards is a
key point in evolution. Pyramid shaped resource allo-
cation has easely improve the convergence speed of the
model at the same time that it reduces the complexity
of aggregates.

Some deep work is needed. Different problems must
be used for testing GALE. At the same time, the re-
sults are compared against the ones obtained with
other classification techniques, not only Neural Net-
works and Cased-Based Reasoning. Agents classifica-
tion capabilities and their aggregation structure must
be revised and improved. We are currently work-
ing with other resource allocation techniques, look-
ing for a better building blocks explotation. These re-
sources allocation proposals also deals with recombi-
nation mechanisms of GALE.
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